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• Stratosphere cooling is more rapid than the
tropospheric warming due largely to increases
of CO2

• Brewer-Dobson circulation largely determines
the O3 spatial distribution.

– Result of planetary wave activity
– Affected by radiative processes including solar

heating and infrared cooling
– Circulation is strengthening with increased CO2

• Understanding radiative heating/cooling rates
is necessary for understanding the radiative
control of circulation in the stratosphere.

Introduction

Garcia et al (JGR in press)

Holton et al., 1995



Cooling Rate Calculations

• Radiative heating/cooling
rates directly proportional
to net flux divergence in a
layer
– Upwelling surface flux
– Flux from layers below
– Flux from layers above
– Layer emission,

transmission
• Knowledge of T, H2O, O3

profiles required
• RRTM (Mlawer et al.,

1997) utilized for fast RT
calculations
– ±0.1 K/day in trop. relative

to line-by-line
– ±0.3 K/day in strat. Relative

to line-by-line

Clough et al, 1995

mK/day/cm-1



Cooling Rate Error Budget

• Perturbations in T, H2O, O3 in the
layer of interest affect that layer’s
cooling rate but also affect cooling in
adjacent layers
– i.e. ΔT(zL) > 0  → Δθ’(zL) > 0

         → Δθ’(zL+1) < 0
        → Δθ’(zL-1) < 0

• Formal error propagation analysis
– Uncertainties in T(z), H2O(z), and

O3(z) propagate into cooling rate
profile uncertainty

– Non-zero covariance in T(z), H2O(z)
and O3(z) errors must be recognized

• CO2, O3 bands contribute
substantially to a priori uncertainty

A priori



Why 50 mbar
• Small T trend allows for

measurement/model inter-
comparison

• T, O3 averaging kernels for linear
Bayesian retrieval are narrow
– H2O ambiguity in AIRS signal

at 50-mbar

• Cooling rate error at 50 mbar
after AIRS measurement
~0.15 K/day, mostly from
CO2, O3 bands

A posteriori



AIRS: a Tool for Cooling Rate Profile Analysis

• AIRS measurements contain information regarding radiative cooling
rates up to 10 mbar
– Explicit through measurement of several bands:

• CO2 v2
• Window
• O3 v3
• H2O v3

– Implicit (far-infrared H2O rotational band)
– Cooling from stratospheric H2O not constrained by AIRS measurements
– See Feldman et al. (2006) for intercomparison of cooling rates derived

various measurements.
• Cloud top pressure and temperature and cloud fraction are sufficient

to constrain stratospheric cooling rates
• For troposphere and tropopause layer, synergy with other

instruments may allow for analysis of cooling rates and comparison
with models.



AIRS L3 products at 50-mbar

• AIRS L3 T, H2O, O3, CTP, CTT, CLW products utilized (Olsen et al)
– Several L3 months missing

• Expected features of 50-mbar temperatures and cooling rates
derived from AIRS data
– Cooling rate at 50-mbar follows but is not synced with temp. at 50 mbar



AIRS L3 50-mbar T and θ’ Selected Maps

• At 50-mbar cooling-to-space term dominates
• O3 offsets CO2 (and H2O) cooling

– O3 profile knowledge necessary for accurate cooling rate
determination



50-mbar T and θ’ differences
• AIRS and ERA-40 (Uppala et al) 50-mbar T and θ’ agree with some discrepancies in high-latitude winter

hemisphere
• AIRS and GISS (Schmidt et al) have substantially more disagreement in T and θ’



Phase (and amplitude) comparison
of AIRS L3 with models and reanalysis

• Phase of 50-mbar signal:
– the mean time each year when the signal crosses the mid-point

between the maximum and the minimum on up-swing.

Lags
ERA-40: 0.3 months
GISS: 1.3
CM2: 0.5



Conclusions
• Stratospheric T and θ’ are necessary for determining

stratospheric circulation
• AIRS measurements capture stratospheric cooling rates to

within 0.15 K/day (within stated computational accuracy of
band-model).

• Comparison between 50-mbar temperature and cooling rates
from AIRS and models
– AIRS data suggest phase of 50-mbar temperature in models lagging
– Models predict warmer low-latitude, colder high-latitude mid-

stratosphere than AIRS L3
– Model cooling rates follow 50-mbar temperature deviation but

hemispheric biases present.
• For a longer discussion of using thermal IR sounders for

cooling rate analysis, look for Feldman et al (JGR in prep)
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Cooling Rate Calculations

• Radiative heating/cooling rates
directly proportional to net flux
divergence in layer

• Knowledge of T, H2O, O3
profile required

• RRTM utilized for fast RT
calculations
– ±0.1 K/day in trop. relative to

LBLRTM
– ±0.3 K/day in strat. Relative to

LBLRTM
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Cooling Rate Error Budget
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• Perturbations in T, H2O, O3 in the
layer of interest affect that layer’s
cooling rate but also affect cooling in
adjacent layers
– i.e. ΔT(zL) > 0  → Δθ(zL) > 0

         → Δθ(zL+1) < 0
        → Δθ(zL-1) < 0

• Formal error propagation analysis

• CO2, O3 bands contribute
substantially to a priori uncertainty

A priori



Phase comparisons for other
latitude bands
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